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Neurosciences, University of Cambridge, Cambridge, UK, and 3The Brain and Mind Institute, University of Western

Ontario, London, Ontario, Canada

(Received 1 December 2011; revised 11 April 2012; accepted 23 May 2012)

Abstract
Background: Recent neuroimaging research has strikingly demonstrated the existence of covert awareness in some patients
with disorders of consciousness (DoC). These findings have highlighted the potential for the development of simple brain–
computer interfaces (BCI) as a diagnosis in behaviourally unresponsive patients.
Objectives: This study here reviews current EEG-based BCIs that hold potential for assessing and eventually assisting
patients with DoC. It highlights key areas for further development that might eventually make their application feasible in
this challenging patient group.
Methods: The major types of BCIs proposed in the literature are considered, namely those based on the P3 potential,
sensorimotor rhythms, steady state oscillations and slow cortical potentials. In each case, a brief overview of the relevant
literature is provided and then their relative merits for BCI applications in DoC are considered.
Results: A range of BCI designs have been proposed and tested for enabling communication in fully conscious, paralysed
patients. Although many of these have potential applicability for patients with DoC, they share some key challenges that
need to be overcome, including limitations of stimulation modality, feedback, user training and consistency.
Conclusion: Future work will need to address the technical and practical challenges facing reliable implementation at the
patient’s bedside.

Keywords: Vegetative state, unresponsive wakefulness syndrome, minimally conscious state, electroencephalography, command
following, communication

Introduction

In recent years, research into disorders of conscious-
ness (DoC) has seen some key advances, with the
successful demonstration of modern neuroimaging
techniques for diagnosis and prognosis [1, 2]. These
disorders, encompassing the vegetative (VS; also
called the unresponsive wakefulness syndrome
(UWS) [3]) and minimally conscious states (MCS)
are marked by inconsistent signs of awareness with
standard behavioural tests of command following.
As a result, misdiagnosis rates among patients have

been relatively high, ranging between 37–43% [4].
Owen et al. [5] were among the first to use
functional magnetic resonance imaging (fMRI) to
show that command following purely by thought
could be detected in such patients. In that study, a
patient clinically diagnosed as being in a VS/UWS
performed mental imagery tasks in response to
command. These tasks produced neuroanatomically
distinct patterns of haemodynamic responses that
were very similar to those observed in healthy, awake
controls performing the same tasks. Monti et al. [6]
exploited the potential of the paradigm by mapping
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Liege, Belgium. Tel: þ32 4 366 23 62. Fax: þ32 4 366 29 46. E-mail: camille.chatelle@ulg.ac.be
*Camille Chatelle and Srivas Chennu contributed equally to this work.

ISSN 0269–9052 print/ISSN 1362–301X online � 2012 Informa UK Ltd.
DOI: 10.3109/02699052.2012.698362

B
ra

in
 I

nj
 D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
IB

I 
C

ir
cu

la
tio

n 
- 

A
sh

le
y 

Pu
bl

ic
at

io
ns

 L
td

 o
n 

07
/1

2/
12

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.



these imagery tasks to yes/no responses. Remarkably,
this allowed a patient behaviourally diagnosed as VS/
UWS to answer correctly a series of autobiographical
questions in real-time, by producing clearly discrim-
inable brain activations. This striking result has
demonstrated the possibility of establishing binary
communication using thought alone. Consequently,
the further development of such techniques could
have tremendous potential for use with the small but
significant minority of patients with DoC who retain
most of their higher cognitive functions, but are
unable to produce any consistent overt behaviour.

Although fMRI has many advantages with regard
to detecting neural activation, availability, afford-
ability and ease of use are not among them. This is
where the older science of cognitive electroenceph-
alography (EEG) offers potential for the develop-
ment of relatively cheap, simple, compact systems
that can be readily deployed at the bedside to detect
volitional brain activity in a patient with DoC and
then used to enable basic communication with the
outside world. EEG offers further comparative
advantages to fMRI in this context. First, it can be
used in the presence of metallic implants that would
make fMRI impossible. Secondly, it is relatively
more resilient to noise artifacts generated by fre-
quent, uncontrollable physical movements observed
in patients with DoC, something that can present a
difficult problem for MRI data analysis. As a third
point, EEG seems to be better suited for repetitive
assessment for patient with fluctuating vigilance.
Monti et al. [6] reported a behavioural misdiagnosis
rate of 17% using their fMRI imagery paradigm;
EEG could give a better estimate of this by allowing
for a much larger, geographically distributed popu-
lation of patients with DoC to be evaluated.

To support this effort, there exists an extensive
body of research into EEG-based brain computer
interfaces (BCIs), conducted mostly over the last
two decades. In the past, these technologies have
employed neural responses detectable with EEG to
provide patients with motor impairments, often
affected by the locked-in syndrome (LIS), the ability
to control a computer interface. These interfaces
usually drive software for simple communication or
control devices that influence some aspect of
patient’s external environment. In addition, they
provide the patient with valuable real-time feedback
on their performance, enabling them to learn to use
the interface better over time. The objectives of this
article are to review this literature in order to assess
the challenges and possibilities for applications that
could improve the quality-of-life for patients with
DoC and their families. In particular, this study will
focus on non-invasive EEG-based BCIs, as they are
likely to be applicable to the widest range of patients.
This study will not address the literature on invasive

BCIs (based, for example, on electrocorticography;
ECoG), as these are currently thought to be ethically
and technically infeasible in this patient population.

This review is structured as follows: first, it reviews
the literature relating to the major types of EEG-BCI
designs with an eye toward their suitability in DoC.
Next, it discusses the comparative merits and
demerits of the previously discussed BCIs and
highlights some general design constraints that will
need to be addressed for feasible DoC applications.
This study concludes with an outlook toward the key
challenges for future research.

Brain–computer interfaces

BCIs, by definition, only use brain activity to drive
external devices or computer interfaces, to enable
communication without motor responses [7]. A
typical BCI (see Figure 1) is composed of several
functional components linked together; beginning
with the input originating from a user who initiates
‘thought actions’, indexed by brain signals (recorded
by EEG, fMRI, ECoG or functional near infrared
spectroscopy) and ending with the output (e.g.
commands for a spelling program or a simple yes/
no response). As outlined in Figure 1, these two
components are connected by a sequence of hard-
ware and software components to pre-process the
signal, extract predictive features and classify the
signal into one of many response classes that
represents the intent of the user [8, 9]. There is
normally a training phase before any feedback is
provided. During this phase, key system parameters
are tuned to the user’s activation patterns, using
supervised learning algorithms.

Before adapting a BCI design for a patient with
DoC, the first step would be to establish, beyond
reasonable doubt, that they are able to follow
commands with adequate consistency. Indeed,
some patients might be able to follow commands,
but not well enough to make BCIs feasible. Hence,
BCIs in DoC will have to follow a two-step
approach: the first would be to establish successful
command following. The second would be to try and
establish communication (simple binary communi-
cation to begin with). Ideally, software and hardware
components used for the first step would be readily
extensible for the second.

Toward this end goal, specific BCI implementa-
tions published in the literature are described, which
are based on characteristic brain signals that can be
volitionally controlled by the user. Amongst the most
popular examples are the P3 event-related
potential (ERP [10]), sensorimotor rhythms (SMR
[11–13]), steady-state evoked potentials (SSEP [14,
15]) and slow cortical potentials (SCP [16, 17]).

2 C. Chatelle et al.
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This review discusses each of these in turn, with a
view toward evaluating their suitability for use with
patients with DoC.

P3-based BCIs

The P3 component of the ERP is a positive
deflection in the EEG time-locked to salient stimuli
(typically evoked over the parietal cortex) and occurs
between 200–500 ms after stimulus onset [18–20].
The P3 is considered to include two distinct sub-
components, the P3a and the P3b. Similar to the
MMN, the ‘bottom-up’ P3a is elicited by novel,
unpredictable stimuli, even if they are irrelevant to
the task being performed. It is typically seen in
oddball paradigms [21] in which participants are
attending to a sequence containing frequent stimuli
interspersed with rare deviant ones, usually referred
to as targets [22]. The deviant stimulus will elicit
different ERPs, the most prominent being the
frontally centred P3a. However, if the deviant is
deemed task-relevant (for example, if it is being
counted), it evokes a posterior, later P3b (peaking at
�300–350 ms). From a cognitive perspective, the
P3b is seen as a marker of consolidation into
conscious awareness of a task-relevant, unpredict-
able target. For the purposes of BCI design in DoC,
this study will focus on the P3b. This is because,
unlike the P3a, the P3b is only evoked in the
presence of ‘top-down’ selective attention, strongly
indicative of conscious control. As an evoked
response for use in BCIs, the P3 has the advantage
of requiring minimal training on the part of the user.

Some of the earliest BCI systems were P3-based,
designed with visual stimuli. Donchin and colleagues
[10, 23] implemented a visual BCI by presenting
letters in a 6�6 matrix and repeatedly flashing each

row and column. To make a selection, the user had
to count the number of times the row or column
containing the desired letter was flashed. To identify
this letter, the BCI averaged responses to each row
and column over multiple flashes. The ones con-
taining the largest P3 responses were assumed to
contain the letter, enabling the BCI to detect the
user’s choice.

Since then, a range of improvements has been
proposed to the original interface [24–26] and the
EEG signal processing techniques [27, 28].
Recently, a large group study by Guger et al. [29]
reported that, in 81 healthy users, 89% were able to
successfully use a P3-based BCI for spelling, with
accuracies of 80% and above. Alongside, many
studies have shown that this system is feasible and
practical for patient groups (see [30] for a review).
Nijboer et al. [31, 32] showed that five out of six
patients affected by Motor Neuron Disease or
Amyotrophic Lateral Sclerosis (ALS) could use the
P3-based BCI for communication after one training
session. Thereafter, four of them continued using it
for functional communication in a second phase of
the study and all were able to spell messages of
considerable length when more features were
extracted from the EEG [32]. Going further,
P3-based BCIs have been applied for other
thought-controlled tasks, including simple games
[33], navigation (e.g. to move a mouse [34]) and
even control of a virtual environment [35].

The question remains, however, as to whether
these BCIs could be adapted for detecting com-
mand-following in patients with DoC. To do so, the
patient would need to be able to understand the task
requirements, attend to stimuli and selectively pro-
cess the salient ones, while retaining information in
working memory. Hence, its presence can be used to

Figure 1. A typical Brain-Computer Interface loop. Real-time neural signals acquired from the user are pre-processed before discriminative
features are extracted therefrom. Machine learning techniques are then used to train classifiers to detect statistical patterns in the features
that are reliably associated with pre-specified (supervised) volitional states of the user. The trained classifer can then be used to classify new
features corresponding to states now selected by the user to communicate choices. Finally, the result of the classification is fed back to the
user, to help them train themselves in the use of the BCI.
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test for command following and then to set up a
BCI. This final step is straightforward, as the patient
can be asked to deem one amongst two or more
equally frequent stimuli as being task-relevant.
Counting their occurrences in an unpredictable
stimulus stream will produce a P3b for the chosen
stimulus. For example, the answer words ‘YES’ and
‘NO’ in a stream of unrelated words, will produce a
P3b for the chosen word.

In recent years, there have been some prominent
findings in the literature, suggesting that some
patients with DoC might retain most of these
high-level cognitive abilities. First, fMRI evidence
suggests that some patients might retain near-normal
levels of language comprehension [36–38]. In addi-
tion, they appear to be able to selectively attend to
and process their own names as compared to
unfamiliar names [39–41]. This finding has been
confirmed with EEG data: ERPs evoked by
increased mismatch negativity (MMN) have been
observed when some patients with DoC heard their
own names presented infrequently amongst tones
and other names [42]. Closer in design to P3 BCI-
type active paradigms, Schnakers et al. [43]
employed a set-up where patients were instructed
to count the number of instances of their own names
presented within an auditory sequence consisting of
other names. They found that five out of 14 (36%)
MCS patients tested produced reliably larger P3
responses when actively counting the occurrence of
their own name as compared to when only passively
listening to them. From this important result, the
authors inferred that these patients demonstrably
retained the ability to volitionally follow commands
with EEG, even though unable to do so behaviou-
rally with the same level of consistency. Moreover,
they used this paradigm to detect signs of conscious-
ness in a patient behaviourally diagnosed as being
comatose [44]. Promisingly, this finding has been
corroborated and extended by Monti et al. [45],
although in fMRI. They found increased haemody-
namic response when a MCS patient actively
counted occurrences of an arbitrarily chosen target
word, indicative of high-level cognitive functions like
top-down attention and working memory.

Taken together, these findings are certainly
encouraging for the development of P3-based BCI
systems that tap into these volitional abilities
retained by some patients with DoC. However,
active tasks will be required for such BCIs (e.g.
requiring the patient to count target stimuli), as P3s
in response to highly salient stimuli (like the patient’s
own name) have been observed in VS/UWS patients
even in passive listening conditions [43].

Crucially, there is a practically motivated need for
further research into auditory variants of P3 BCIs. It
is often the case that patients with DoC lose the

ability to fixate their gaze and attend visually.
Consequently, auditory BCIs are more likely to be
usable by a greater number of patients with DoC
who could demonstrate signs of awareness. Recently,
some auditory P3-based BCI designs have been
proposed for patient groups unable to control eye
movements. In one of the first of these, Hill et al.
[46] allowed a healthy user to make a binary decision
by focusing attention on one of two concurrent
auditory stimuli differing in location (on the left or
right of the subject) and pitch. The user’s task was to
report the number of deviant target beeps contained
in the sequences. The study suggested that it is
possible for users to generate a detectable P3 at the
single-trial level by focused auditory attention. Using
classifiers developed by Hill et al. [46], Sellers and
Donchin [47] tested an auditory P3-based BCI
asking severely physically disabled patients to pay
attention on one of four randomly presented stimuli
(yes, no, pass, end). Results suggested that it is a
promising tool for use as a non-muscular commu-
nication device. To address the reduction in
efficiency commonly found with auditory BCIs,
Schreuder et al. [48] used spatial hearing as an
additional auditory cue to enhance performance.
By presenting target and non-target sounds from
different spatial locations surrounding the user, they
demonstrated P3 classification accuracies of over
90%. Halder et al. [49] demonstrated the viability of
fast binary (yes/no) communication with an auditory
BCI based on a three-stimulus (two target stimuli,
one frequent stimulus) paradigm, instead of the
more common two-stimulus design.

Several studies have also investigated whether it is
possible to operate the standard matrix P3 speller
with auditory stimuli instead of flashes. Klobassa
et al. [50] used six environmental sounds to repre-
sent the six rows and the six columns of a standard
speller matrix. They reported online results and
offline analyses showing that eight out of 10 partic-
ipants achieved accuracies of 50% or more. An
alternative auditory adaptation of the visual speller
was reported by Furdea et al. [51]. They coded the
rows of a 5�5 matrix with numbers from 1–5 and
the columns with numbers from 6–10. These num-
bers were then presented auditorily. To select a
letter, users had to focus their auditory attention on
the numbers corresponding to the row and then the
column containing the desired letter. When tested
with four severely paralysed patients in the end-stage
of a neurodegenerative disease, the system per-
formed above chance level [52]. However, as one
might expect, spelling accuracy was significantly
lower with the auditory variant than with the original
visual speller. Moreover, participants reported
difficulties in concentrating on the auditory task,
indicative of the increased difficulty.

4 C. Chatelle et al.
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An alternative paradigm for a two-choice auditory
P3-based BCI, based on the phenomenon of audi-
tory stream segregation, has been described by
Kanoh et al. [53]. When two or more repeating
sounds differ in at least one acoustic attribute (e.g.
the sequence. . . ABAB. . .), they are perceived as two
or more separate sound streams (i.e.. . . AAA. . . and
. . .BBB. . .). By randomly placing infrequent
deviant tones within these streams, an oddball
paradigm is created. The auditory N200 ERPs
generated when the user pays selective attention to
one of the tone sequences can be detected and used
to convey intent. Based on this idea, they developed
a Morse code speller. To use it, the user focuses their
auditory attention on the deviant tones in one of the
two streams to generate one of two possible symbols
(‘dash’ and ‘dot’), to effectively spell letters in Morse
code.

To a relatively limited extent, researchers have
explored the use of tactile stimulation. In a study by
Brouwer and van Erp [54], two, four or six vibro-
tactile stimuli were applied around the waist of
healthy participants. These tactile stimuli have the
advantage of not taxing the auditory or visual system
and being mostly unnoticeable to other people. The
participants were asked to focus on one (target)
stimulus and to ignore the rest. The statistically
significant accuracy with which the tactile P3s could
be classified demonstrated the feasibility of this
approach. However, the authors pointed out that
further improvements to the tactile interface and
stimulation design would be required to
improve accuracy to a level acceptable for use with
patients.

Finally, it is worth noting that ERP components
other than the P3 could potentially be used to
improve performance of BCIs. Bianchi at al. (2010;
[55]) reported preliminary results suggesting that
sensors located over the occipital cortex provide
classifiable information, highlighting the fact that
some visual evoked components (e.g. the N100)
might advantageously be combined with P3s for
discrimination of targets from non-targets. The
question about whether similar improvements can
be made by incorporating early auditory evoked
potentials in auditory BCIs remains to be explored in
future work.

In summary, research into P3-based tasks is
encouraging for DoC applications and has demon-
strated the possibility of selecting a stimulation
modality sensitive to the patient’s individual circum-
stances. However, the need for active tasks to
differentiate volitional P3 responses from automatic
ones will add to the cognitive load imposed on
patients. On the technical side, machine learning
algorithms will have to be adapted to the difficult
problem of detecting a relatively small and often

abnormal P3 response in patients, with usually only
a few clean trials worth of signal. Furthermore, the
performance limitations imposed by non-visual
stimulation modalities need to be overcome. In this
regard, future research will need to investigate
potential benefits of multi-modal audio-tactile stim-
ulation suitable for patients, alongside means for
providing effective feedback with these modalities.

SMR-based BCIs

The Sensorimotor or mu-rhythm (SMR) refers to
the 8–15 Hz oscillatory EEG activity that can be
recorded over primary sensory and motor cortical
areas [12, 56–59]. It is usually accompanied by
18–26 Hz harmonics in the beta frequency band. In
neural terms, the SMR is seen as an ‘idling rhythm’
of neurons in the motor cortex. Crucially, it has been
known for many years that the SMR desynchronizes,
i.e. its power decreases, with the preparation of
movement [60]. This power decrease, termed event-
related desynchronization–ERD [61], is particularly
prominent in the relevant motor regions contralat-
eral to the limb movement being made. Often, an
ipsilateral increase in SMR power or ‘event-related
synchronization’ (ERS) is observed after the
movement [62].

For the purposes of BCI design, the most inter-
esting feature of the SMR is that ERD and ERS do
not require actual movement; as they are markers of
well-developed motor competencies, they occur even
when the user is asked to imagine performing a
movement [63, 64] kinesthetically [65].
Furthermore, participants who are provided with
visual or auditory feedback on their performance can
learn to regulate the SMR amplitude [66]. Since the
mid-1980s, several motor-imagery BCIs have been
developed to tap into this phenomenon. These
systems allow the user to select between two-
to-four response choices by mapping pairs of
complementary motor imagery tasks (e.g. right
hand and left hand) to either bimodal responses or
to continuous control of a computer cursor.

Detailed studies of motor imagery BCIs have been
conducted, both with healthy controls [67] and
paralysed patient populations [9]. In patients who
could not perform actual limb movements due to
severe motor disabilities, SMR modulation due to
imagined movement could be detected and classified
with accuracies above 70% [13, 68, 69]. In addition,
several asynchronous spelling applications have been
developed using motor imagery and have shown
promising results in healthy controls [70, 71].
Neuper et al. [72] trained a paralysed patient
diagnosed with severe cerebral palsy to use a
language support program [73] for communication.
In their paradigm, the patient was presented with a
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virtual keyboard with a pre-defined set of letters,
split into two equally sized sub-sets at the top and
the bottom of the computer screen. The patient had
to select the sub-set containing the target letter using
a mental task. Following the detection of this choice,
the chosen sub-set was split again. This successive
splitting of the letter set continued until only one
letter was selected. They showed that, after several
months of training, the patient was able to control
the keyboard with 70% accuracy.

Going beyond two-choice designs, Pfurtscheller
et al. [74] studied the possibility of disentangling
four different motor imagery tasks (pointing either to
the left, right, up or down), representing one of four
different motor imagery tasks (left hand, right hand,
both feet and tongue, respectively) and one mental-
calculation task. They found that it was difficult to
discriminate between more than two mental states
when only imagery-induced ERD patterns were
available. This was mainly because of the large
number of perceptual and memory processes that
resulted in a non-specific desynchronization of alpha
band rhythms [75], irrelevant for the classification
task at hand. Wolpaw et al. [57, 76] have had some
success in developing multi-class SMR-based BCIs,
by having participants modulate mu- or beta-rhythm
amplitudes separately. Using their system, healthy
controls and patients with motor disabilities learned
to control their brain activity to move a cursor in one
or two dimensions toward targets on a computer
screen.

This prior research in patients with motor
disabilities has laid much of the groundwork for
potential applications of motor-imagery BCIs to
patients with DoC. In particular, researchers have
developed sophisticated methods for extracting best
possible classification performances to drive BCIs.
Amongst these, Common Spatial Pattern (CSP)
analysis is a popular technique suitable for use with
increasingly popular high-density EEG hardware.
Mathematically speaking, CSP analysis is a super-
vised Blind Source Separation algorithm. It is
focused on improving the spatial resolution of EEG
data at the single-trial level [77]. CSP analysis aims
to spatially filter high-density data from a large
number of EEG sensors (electrodes) across the scalp
to a relatively small number of task-relevant spatial
patterns of activity. In a motor imagery setting, the
scalp topographies of these spatial filters are selected
on a per-user basis, selected so as to maximize the
discriminability of the ERD patterns across a pair of
motor imagery tasks. The spatial patterns generated
by appropriate filters are well suited for improving
classification performance with relatively simple
linear approaches. Indeed, Blankertz et al. [77]
have demonstrated that CSP analysis can assist in
generating excellent (>84%) classification of motor

imagery in eight out of 14 BCI-naı̈ve healthy
participants after the first training session. Given
these properties, CSP analysis could provide key
advantages for dealing with the large amount of
variability observed across patients with DoC. In
particular, due to the aetiology (and subsequent
atrophy) of their brain injuries, the cortex might have
undergone significant functional remapping. These
changes are likely to be significantly variable from
one patient to the next; spatial filtering could
account for this variability by isolating patient-
specific spatial patterns (if any) that are likely to be
generated by volitional motor imagery. This pre-
processing step enables the subsequent single-trial
classification procedure and the BCI in general to be
tailored to the patient’s specific neuroanatomy and
dynamics.

Preliminary evidence in the literature suggested
that patients with DoC might be able to use some
forms of motor imagery to express volitional intent.
In particular, Bekinschtein et al. [78] showed that
some VS/UWS and MCS patients were able to
produce sub-threshold increases in hand electro-
myographic (EMG) activity in response to move-
ment commands. This result pointed to the
possibility of developing of simple EEG BCIs
based on two-choice imagery paradigms, which
could afford such patients the means to demonstrate
awareness. Goldfine et al. [79] recorded EEG from
three patients with severe brain injury (MCS and
LIS), while they were asked to imagine motor and
spatial navigation tasks. In one MCS patient and one
LIS patient, they were able to show evidence of
significant differences between the frequency spectra
accompanying the two imagery tasks, although the
pattern of changes observed in patients differed from
those in controls [79]. Cruse et al. [80] investigated
the ability of DoC patients to perform demanding
motor imagery tasks that could be discriminated in
their EEG at the single-trial level. They assessed 16
behaviourally VS/UWS patients while asking them to
imagine either squeezing their right hand or moving
all their toes. The results showed that, in 19% (3) of
the patients, a support vector machine was able to
accurately predict the task being performed, with
cross-validated accuracies between 61–78%. Cruse
et al. [81] performed the same test with MCS
patients and found that five out of 23 (22%) MCS
patients were able to follow command using motor
imagery. Such paradigms could allow researchers to
establish binary communication in patients who
successfully perform the imagery tasks, by mapping
imagination of right hand movement to ‘YES’ and
toe movement to ‘NO’.

These DoC studies with SMR are promising in
their use of the auditory modality. However, learning
to map intended responses to motor imaginations is

6 C. Chatelle et al.
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a relatively complex task and can be challenging to
perform consistently even for healthy adults [67].
Hence, SMR-based BCIs will probably be useful
only for a minority of patients retaining high-level
cognitive function. Along with the use of techniques
like CSP to improve classification performance and
reduce training time, suitable means of providing
feedback will need to be investigated. In this regard,
past research into adapting SMR-based BCIs to
other sensory modalities might well prove
useful. Nijboer et al. [31] demonstrated that SMR-
modulation could be learned and improved with
auditory feedback, albeit slower than with visual
feedback. Further, Cincotti et al. [82] showed that
SMR could also be modulated with tactile feedback.
In fact, they found no difference between the
efficacies of tactile and visual feedback.

Alternative forms of imagery. Despite its popularity
in BCI research, motor imagery is not the only task
that can be used for volitional modulation of
oscillatory rhythms in the brain. Mental arithmetic
[83, 84], mental task rotation [85] and many others
have been shown to lead to differentially specific
patterns of spatially-specific cortical activation and
deactivation [86]. Given that some patients with
DoC were able to follow command imagine playing
tennis and spatial navigation with fMRI [5, 6], it
might be fruitful to draw upon this previous work to
explore novel imagery tasks that are well suited for
use with EEG. The most suitable sorts of tasks in
this context are likely to be based on well-estab-
lished, long-term mental capabilities that might be
preserved in DoC. Looking ahead, tapping into
these capabilities might allow BCI design to move
beyond the two-choice design, into the realm of
complex and nuanced communication.

Steady-state evoked potential BCIs

This study now considers a set of related BCI
approaches based on the volitional modulation of
steady-state electrical responses set up in the brain
by the presentation of oscillatory stimulus
sequences. Such BCI designs are distinguished
based on the sensory modality used to present
these stimuli, considered here in turn.

SSVEP-based BCIs. Steady-state visually evoked
potentials (SSVEPs; see [87] for a review) are the
oscillatory electrical responses of neurons in the
visual cortex to stimuli that are repeatedly presented
(or flashed) at frequencies above 6 Hz. For many
years, it has been known that such rapid stimulus
sequences set up stable and synchronized neural
oscillations in the occipital cortex, at frequencies

corresponding to that of the stimulus [88]. SSVEPs
are easy to detect, as their frequency content is
completely determined by the visual stimuli used to
elicit them. These stimuli typically also elicit
oscillations at harmonics of the stimulating fre-
quency [88, 89].

For the purposes of BCI design, the finding that
the strength of the SSVEP is modulated by endog-
enous attention is crucial. Specifically, it has been
found that, when the visual system is presented with
multiple stimuli flashing at different frequencies, the
frequency of the stimulus being attended to gener-
ates the largest oscillatory response in the brain.
Tapping into this knowledge, researchers have built
BCIs that use stimuli at different frequencies to
represent a set of responses from which the user
selects one by paying attention to it. Such BCIs are
particularly attractive because occipital SSVEPs
have high signal-to-noise ratios and are nearly
completely free of eye movement [90] and electro-
myographic artifacts [91, 92]. Moreover, SSVEP-
based BCIs allow the user to select from a relatively
large number (up to 64 of different choices [15, 93])
without adversely affecting classification accuracy,
which tends to range between 64–96.5% [87].

Stimulation for modern SSVEP-based BCIs is
delivered either on a computer screen or using light-
emitting diodes flickering at different frequencies
[15, 93, 94]. The power at the stimulation frequen-
cies over occipital electrodes is fed to a classifier,
which is trained a priori to identify the stimulus
frequency most likely to be focused on by the user. It
has been found that the first three harmonics of the
stimulus frequencies carry additional information,
providing for a significant increase in classification
accuracy [95]. Progressive improvements in the
design have produced systems that allow for an
impressive rate of communication. Parini et al. [96]
showed performance results from an SSVEP-based
BCI that employed four cubic LED stimuli mounted
at each side of a display. Seven healthy participants
and four patients affected by muscular dystrophy at
different stages were able to successfully use this
system. In particular, the study reported the robust-
ness of the system and the rapidity of user
performance.

The ability to focus gaze and attention is an
obvious requirement for using SSVEP BCIs. Hence,
their use by a majority of patients with DoC, who
often have little or no control of their eye move-
ments, would seem infeasible. There has been some
progress in addressing this limitation; paradigms
based on covert spatial attention [97], selective
attention to spatially overlapping stimuli [98] and
superimposed illusory surfaces [99] have also been
found to evoke changes in SSVEP activity. However,
preliminary tests with healthy controls have found
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significant increases in the variability of perfor-
mance, making it difficult for a patient to reliably
control the BCI.

SSSEP-based BCIs. Analogous to visually evoked
SSVEPs, steady-state somatosensory evoked poten-
tials (SSSEPs) are elicited by a continuous vibro-
tactile stimulus of a constant carrier frequency and a
modulation frequency applied to the skin [100].
Using this technique, early research reported that
when the palm [101] or the palm and sole [102, 103]
were stimulated, corresponding steady-state
responses were recorded at the scalp. Such non-
visual BCIs based on SSSEPs hold promise for
patients with DoC unable to focus their gaze.

The first study showing attentional modulation of
SSSEP amplitude in humans was done by
Giabbiconi et al. [104], using tactile stimuli with
different frequencies applied simultaneously to the
left and right index finger. Following this, the
usability of SSSEPs in BCI design was evaluated
by Müller-Putz et al. [105]. They stimulated both
index fingers using tactile stimulation in the reso-
nance frequency range of the somatosensory system.
Four healthy subjects participated in the experi-
ments and were trained to modulate the induced
SSSEPs by focusing their attention on either their
left or their right index fingers. Two of them learned
to modulate their SSSEPs with accuracies between
70–80%, demonstrating the initial possibilities of
this approach.

Researchers have also attempted to combine
multiple modalities to improve the classification
accuracy of steady-state BCIs. Such BCIs, based
on multi-modal attention, have been proposed by
Zhang et al. [106]. They combined tactile and visual
stimuli to realize a 3-class BCI based on SSSEPs and
SSVEPs. The combination of the two modalities
resulted in improved classification accuracies when
compared to either modality alone. Further, they
showed that steady-state evoked potential ampli-
tudes were modulated not only by switching spatial
attention within one sensory modality, but also by
switching across different modalities.

ASSR-based BCIs. There have been a few relatively
recent attempts to use steady-state responses pro-
duced by auditory stimulation, i.e. ASSRs (Auditory
steady-state responses [107–109]) to drive BCIs.
Cortically recorded ASSRs are generated presenting
amplitude-modulated tones to the ear [110]. Ross
et al. [108] showed that the amplitude of the
prominent ASSR generated by 40 Hz stimulation is
modulated by selective attention. However, as of yet,
there has been no demonstration of a BCI driven by
such attentional modulation of ASSRs. The BCI

design challenge yet to be overcome here is the
relatively small size of this modulation effect, making
it difficult to detect in real-time.

BCIs employing ASSRs would come with the
important advantage of not requiring the visual
modality. Hence, as with SSSEP-based BCIs, they
could find applications for patients with DoC.
However, a potential drawback, the seriousness of
which is yet to be properly studied, might be related
to sensory stress and irritation brought on by
continual steady-state stimulation. The problem of
cognitive fatigue and short attention spans, common
in patients with DoC, might be exacerbated with
steady-state stimulation, limiting the viability of
steady-state BCI applications in this context.

SCP-based BCIs

This study finally considers the class of BCIs based
on the modulation of Slow Cortical Potentials (SCPs
[111]). These slow voltage changes generated in the
cortex are among the lowest frequency features of
scalp-recorded EEG, occurring over periods of
0.5–10.0 seconds. Usually, negative SCPs are asso-
ciated with motor movement and other functions
involving increased cortical activation, while positive
SCPs are more associated with reduced cortical
activation [111]. Over the last few decades,
Birbaumer and colleagues [16, 112, 113] have
worked on the development of SCPs-based BCIs.
Crucially, they have shown that people can learn to
modulate their SCPs and use them to control the
movement of an object on a computer screen.
Further, this system has been tested in people with
late-stage ALS and has proved capable of providing
basic communication capacities [17]. Often, these
BCIs are based on visual feedback from a computer
screen that shows one choice at the top and one at
the bottom. Two seconds of baseline are necessary to
provide the system the user’s initial voltage level. In
the next 2 seconds, the user selects either the top or
bottom choice by attempting to decrease or increase
their SCP voltage level by a criterion amount,
leading to a vertical movement of a cursor in the
chosen direction. In addition to the commonly used
visual feedback mode, SCP BCIs have also been set
up to provide auditory or tactile feedback [113].
However, a study by Pham et al. [114] in healthy
participants showed that auditory feedback resulted
in a relative increase in the variability of performance.

SCP-based BCIs come with the advantage of
being the most stable over longer periods of usage
and do not require the use of any specific sensori-
motor functions. This is a potential advantage for
patients with DoC. On the other hand, the speed of
choice selection is low, owing to the slow rates at
which SCPs manifest. More importantly, these BCIs
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require relatively long periods of user training,
sometimes in the order of months for some LIS
patients [30]. It will probably be a minority of
patients with DoC, showing consistent signs of
awareness, who will be able to exercise the cognitive
control required to train their SCPs over extended
periods of time.

Discussion

Currently, there still remain a number of barriers
keeping patients with DoC from benefitting from
novel BCI technologies. Three key challenges are
identified below:

(1) First, there is the sensory dysfunction, arousal
fluctuation and limited attention span com-
monly observed in DoC and especially in MCS.
Hence, task/stimulus complexity is an important
factor to consider when evaluating BCI
applications for such patients.

(2) Stimulation and feedback modality is another
issue: the visual modality is infeasible for use
with most patients with DoC and it has proven
difficult to develop effective auditory and
tactile BCIs that deliver relatively consistent
performance [49, 52, 114].

(3) In addition, the suitability of different BCI
designs for individual patients is significantly
variable and will need to be comparatively
assessed in each case. While some patients
have been shown to be able to generate reliable
P3s in response to task-relevant stimuli, others
have demonstrated the ability to consistently
perform motor imaginations in response to
command.

Amongst the different designs, SMR BCIs are
relatively less hindered by problems of stimulation
modality. There is relatively little stimulation that
needs to be presented and this can be effectively
delivered auditorily. Furthermore, such BCIs can be
designed to be self-paced, further minimizing intru-
siveness and patient distress. Results on their use in
some DoC patients have produced promising results
[9, 80, 81]. This knowledge, along with the fact that
other forms of mental imagery (e.g. playing tennis vs
spatial navigation imagery) in fMRI have already
allowed some patients with DoC to communicate
[6], bodes well for similar BCI variants.

However, as SMR-based BCIs rely on the user’s
ability to learn mappings between intention and
movement imagery, they require adequate training
before reliable performance can be achieved. In this
regard, the need for consistent SMR changes within
the training procedure poses a significant challenge
in the DoC context. The classification algorithms

that drive BCIs naturally depend on the quality and
inter-trial consistency of the data used to train them.
This is problematic for most patients with DoC,
especially those in MCS, who are prone to frequent
and prolonged bouts of fatigue, accompanied by
severe temporal variability in their levels of arousal
and awareness. This would effectively render them
unable to pay attention for sufficiently long periods.
For many patients, this limitation will adversely
affect the statistical power of the classifiable patterns
latent in their EEG data.

In comparison, P3-based BCI designs rely on
‘natural’ responses of the brain to salient stimuli and
hence require relatively little explicit user training.
As highlighted earlier, previous findings by Monti
et al. [45] and Schnakers et al. [43] have shown that
some patients with DoC can generate consistent
changes in fMRI and EEG when asked to selectively
attend to task-relevant stimuli. These are promising
for the development of simple, binary BCIs based on
auditory/tactile stimulation. Eventually, if successful
with a patient, a P3-based BCI for spelling words
and sentences using a predictive language support
program would provide a true, multi-class system
with relatively high efficiency.

For any of the BCI designs discussed in this
article, results from patients with DoC will need to
be interpreted with great caution. In part, this is
because, even in a large sample of the healthy
controls, only 20% of users were able to drive a
motor-imagery based BCI with accuracies greater
than 80% [67]. In fact, between 40–50% of users
only managed accuracies �60–70%. In comparison,
P3-based BCIs fared much better, with 89% of
healthy controls able to use it with an accuracy
between 80–100% [29]. Although these results do
not invalidate the potential of these BCIs in DoC
research, one must keep in mind that the likelihood
that a covertly aware patient might go undetected
(i.e. the false negative rate) is likely to vary signif-
icantly across different tests and patient groups.
Hence, none of these tests applied individually to
look for command-following can currently be used
to interpret negative results, without combining
findings from multiple testing methods to mitigate
against the level of uncertainty.

Furthermore, it is important to note that, while
the BCI designs reviewed in this article have seen
many years of intensive development, much of this
work has involved testing of various designs with
healthy controls. As one might expect, it is often the
case that results from controls do not generalize well
to patient groups [115]. Hence, there is a need to
conduct extensive testing with patients likely to
benefit from various BCI systems in their daily lives
[116]. To date, EEG and ERP responses demon-
strating volitional brain activity in DoC have only
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been shown in relatively small cohort studies or case
reports. Larger cohort studies by multiple,
independent groups will need to test and validate
these findings. A better understanding of variability
in responses across a wider population of patients
will certainly aid future BCI research.

Lately, there is increasing research interest in the
question of ‘what it is like’ to be in an unresponsive
or minimally conscious state [1, 117]. The develop-
ment of methods for working towards empirically
motivated answers to such questions will undoubt-
edly benefit from the latest BCI research. As neuro-
imaging contributes to the current understanding of
mental states in DoC, one will be able to better
evaluate the challenges, benefits and viability of the
different BCI designs discussed in this review [7].

Conclusions

This study has reviewed a range of BCI systems that
might prove useful for enabling communication in
DoC. The prior research into the development of
these systems has done much of the groundwork to
allow one to evaluate the relative merits and demerits
of these designs, with a view to their viability for
patients with DoC. These are, however, a particu-
larly difficult group of patients for BCI research.
Developing feasible BCIs in this context will require,
in parallel, preliminary exploratory research into
basic cognitive tasks that allow one to probe the
forms in which patients could potentially express
volition. This work might bring to light new para-
digms, e.g. based on novel forms of mental imagery,
which could then be applied to developing BCIs.
Eventually, one would hope to have at one’s disposal
an essential, broad-based battery of neuroimaging
paradigms that tap into a wide range of cognitive
functions with the potential to drive BCIs. The
combination of knowledge therefrom will better
enable one to tailor the mechanisms and complexity
of future designs to the specific capabilities of
individual patients with DoC most likely to benefit
from them. However, it will take significant time and
effort before current BCI technology can move from
bench to the bedside and reliably inform clinical
practice for improving the quality-of-life in patients
with DoC.
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